Synthesis and Properties of Three Tris(1,10-phenanthroline) ruthenium (II) Derivatives

Fa Ming TIAN, Peng WANG, Guo Yi ZHU*

Laboratory of Electroanalytical Chemistry, National Analytical Research Center of Electrochemistry and Spectroscopy, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022

Abstract: Three new asymmetrical ruthenium (II) complexes: $[Ru(phen)_2\{phen-NHCO(CH_2)_4Br\}](PF_6)_2$, $[Ru(phen)_2\{phen-NHCO(CH_2)_5Br\}](PF_6)_2$ and $[Ru(phen)_2\{phen-NHCO(CH_2)_{10}Br\}](PF_6)_2$ were synthesized, which were confirmed by the technique of FT-IR, ¹H NMR and ESI-MS. The electrochemical and fluorescent properties of three Ru (II) complexes were investigated with cyclic voltammetry and fluorometry.

Keywords: Tris(1,10-phenanthroline)ruthenium(II) complexes, synthesis, electrochemistry, fluorescence.

Ru (II) polypyridine complexes have attracted many researchers because of their excellent properties of photochemistry, photophysics and electrochemistry¹. Recently, Bis (2,2'-bipyridine)[4-methyl-4'-(bromohexyl)-2,2'-bipyridine] ruthenium (II) perchlorate was used as an optode material for ECL sensors to selectively detect oxalic acid². It is known that ECL efficiency of Ru (1,10-phenanthroline)₃²⁺ is higher than that of Ru (2,2'-bipyridine) $_3^{2+3}$. In order to develop more efficient ECL sensor, we designed and synthesized three new asymmetrical tris (1,10-phenanthroline)ruthenium (II) hexafluorophosphate derivatives with a ligand 5-substituted by ω -bromo-alkyl amides shown in **Scheme 1**.

Scheme 1 Synthesis of three new tris (1,10-phenanthroline)ruthenium (II) hexafluorophosphate derivatives ^{*a*}

^a a R=(CH₂)₄Br, b R=(CH₂)₅Br, c R=(CH₂)₁₀Br

The key materials, 5-amino-1,10-phenanthroline and cis-Ru (phen)₂Cl₂, were prepared by the methods of references^{4, 5}.

Synthesis of 1a, 1b and 1c

Equimolar amounts of corresponding ω -bromo-alkylacylchloride was added dropwise to a suspension of 5-amino-1,10-phenanthroline and sodium dicarbonate in dry acetonitrile with stirring at room temperature under nitrogen for 4-6 hours. Then the resulting solid was filtered and washed by acetonitrile, 5% sodium bicarbonate aqueous solution and water in turn. After being dried *in vacuo*, yellow microcrystals **1a-c** were obtained.

Synthesis of 2a, 2b and 2c

After equimolar amounts of **1a-c** and *cis*-Ru (phen)₂Cl₂ were refluxed in 4:1 methanol/H₂O for 10 hours under nitrogen, superfluous sodium hexafluorophosphate was added into the cold solution. The orange microcrystals **2a-c** were obtained.

Electrochemistry

The electrochemical properties of the three title compounds were investigated by cyclic voltammetry. **Table 1** shows the cyclic voltammetric data of **2**. They undergo a reversible single-electron oxidation when the potential scans from 1.15 to 1.50 V.

Table 1	Cyclic voltammetric data for tris (1,10-phennanthroline)ruthenium(II)
	hexafluorophosphate derivatives 2a-c ^{<i>a</i>}

compound	$E^{pa}/{ m V}$	E^{pc}/V	$E^{1/2}/V$	$ riangle E^p/\mathrm{mV}$
2a	1.306	1.238	1.272	68
2b	1.306	1.237	1.272	69
2c	1.305	1.239	1.272	66

^{*a*}Experimental conditions: **2** (*ca.* 10^{-3} mol·dm⁻³), supporting electrolyte *n*-Bu₄N⁺PF₆⁻ (*ca.* 0.1 mol dm⁻³) in dry acetonitrile, woking electrode Au, counter electrode Pt, reference electrode SCE, scan rate 100 mV s⁻¹ using CHI 660 electrochemical station.

Fluorescence

The fluorescence emission maximal peaks of 0.1 mmol·dm⁻³ **2a-c** in ethanol at room temperature are 595 nm ($\lambda_{\text{excitation}} = 473 \text{ nm}$), 592 nm ($\lambda_{\text{excitation}} = 465 \text{ nm}$) and 594 nm ($\lambda_{\text{excitation}} = 472 \text{ nm}$) respectively. These intense emissions are significant contribution to the excited state from an interaction between the metal *d* orbitals and the ligand π system⁶.

Electrochemiluminescence (ECL)

ECL intensity of 2a and 0.05 mol dm⁻³ n-tripropylamine is positive related to its

concentrations from 10^{-3} to 10^{-8} mol dm⁻³ in 0.01 mol dm⁻³ phosphate buffer aqueous solution (pH=7.5) when a 1.3 V voltage was applied to the Au woking electrode, so are **2b** and **2c**.

Conclusion

As expected from these results, all new Ru (II) complexes 2 behave as good materials for optodes, thus further experiments are underway to prepare highly selective and sensitive ECL sensor based on the new Ru (II) complexes.

Acknowledgment

The financial supported from the National Natural Science Foundation of China (Grant 96-A23-03-01) is gratefully acknowledged.

References and Notes

- a) I. Ortmans, C. Moucheron and A. K. D. Mesmaeker, *Coordin. Chem. Rev.*, **1998**, *168*, 233.
 b) Y. K. Au and W. T. Wong, *Coordin. Chem. Rev.*, **1997**, *162*, 417.
 c) S. M. Lee and W. T. Wong, *Coordin. Chem. Rev.*, **1997**, *164*, 415.
- 2 C. Z. Zhao, N. Egashira, Y. Kurauchi and K. Ohga, Anal. Sci., 1997, 13, 333.
- 3 H. J. Yang and S. R. Gudibande, PCT WO 96/35697, 1996, 20.
- 4 J. P. Lecomte and A. K. D. Mesmaeker, J. Chem. Soc. Farady Trans., 1993, 89, 3261.
- 5 B. P. Sullivan, D. J. Salmon and T. J. Meyer, *Inorg. Chem.* 1978, 17, 3344.
- 6 D. M. Roundhill, *Photochemistry and Photophysics of Metal Complexes*, Plenum Adress: New Nork, **1993**, *167*.
- 7 New compounds **1a-c** and **2a-c** have been characterized and presented satisfactory spectra data

For **1a**: light red solid (yield 87%); IR (KBr)/cm⁻¹ 1666 (C=O); ¹H NMR (400 MHz, DMSO-d₆) δ_{H} : 1.95 (m, 2H, CH₂), 2.07 (m, 2H, CH₂), 2.71 (t, 2H, CH₂), 3.74 (t, 2H, CH₂), 7.86 (q, 1H, 8-H), 7.95 (q, 1H, 3-H), 8.30 (s, 1H, 6-H), 8.57 (q, 1H, 7-H), 8.73 (q, 1H, 4-H),9.15 (q, 1H, 9-H), 9.25 (q, 1H,2-H), 10.32 (s, 1H, NH); ESI-MS 380.9 ([M+Na]⁺).

For **1b**: yellow solid (yield 63%); IR (KBr)/cm⁻¹ 1663 (C=O); ¹H NMR (400 MHz, DMSO-d₆) δ_{H} : 1.64 (m, 2H, CH₂), 1.86 (m, 2H, CH₂), 1.92 (m, 2H, CH₂), 2.67 (t, 2H, CH₂), 3.70 (t, 2H, CH₂), 7.86 (q, 1H, 8-H), 7.94 (q, 1H, 3-H), 8.57 (d, 1H, 7-H), 8.72 (d, 1H, 4-H), 9.15 (d, 1H, 9-H), 9.24 (d, 1H, 2-H), 10.24 (d, 1H, NH); ESI-MS 395.0 ([M+Na]⁺).

For **1c**: yellow solid (yield 70%); IR (KBr)/cm⁻¹ 1659 (C=O); ¹H NMR (400 MHz, DMSO-d₆) δ_{H} : 1.39 (br, 12H, CH₂×6), 1.78 (m, 2H, CH₂), 1.87 (m, 2H, CH₂), 2.69 (t, 2H, CH₂), 3.67 (t, 2H, CH₂), 7.83 (q, 1H, 8-H), 7.95 (q, 1H, 3-H), 8.28 (s, 1H, 6-H), 8.53 (d, 1H, 7-H), 8.70 (d, 1H, 4-H), 9.14 (d, 1H, 9-H), 9.23 (d, 1H, 2-H), 10.22 (s, 1H, NH); ESI-MS 465.3 ([M+Na]⁺).

 $\begin{array}{l} \label{eq:stars} For \mbox{\bf 2a}: IR (\mbox{ KBr })/cm^{-1}\mbox{ 1697 (}C=O \mbox{ }); \ ^1H \mbox{ NMR (} 400 \mbox{ MHz, }DMSO-d_6 \mbox{ }) \mbox{ } \delta_H : 1.96 \mbox{ } (\mbox{ } m, \mbox{ } 4H, \mbox{ } CH_2 \mbox{ }), \mbox{ } 2.70 \mbox{ } (\mbox{ } m, \mbox{ } 2H, \mbox{ } CH_2 \mbox{ }), \mbox{ } 3.85 \mbox{ } (\mbox{ } t, \mbox{ } 2H, \mbox{ } CH_2 \mbox{ }), \mbox{ } 3.85 \mbox{ } (\mbox{ } t, \mbox{ } 2H, \mbox{ } CH_2 \mbox{ }), \mbox{ } 3.85 \mbox{ } (\mbox{ } t, \mbox{ } 2H, \mbox{ } CH_2 \mbox{ }), \mbox{ } 3.85 \mbox{ } (\mbox{ } m, \mbox{ } 6H, \mbox{ } 3-H, \mbox{ } 8-H, \mbox{ } 3'-H \mbox{ } and \mbox{ } 8'-H \mbox{ }), \mbox{ } 8.20 \mbox{ } (\mbox{ } m, \mbox{ } 6H, \mbox{ } 2-H, \mbox{ } 9'-H \mbox{ }), \mbox{ } 8.52 \mbox{ } (\mbox{ } m, \mbox{ } 4H, \mbox{ } 5-H \mbox{ } and \mbox{ } 6-H \mbox{ }), \mbox{ } 8.91 \mbox{ } (\mbox{ } m, \mbox{ } 7H, \mbox{ } 4-H, \mbox{ } 7-H, \mbox{ } 4'-H, \mbox{ } 7'-H \mbox{ } and \mbox{ } 6'-H \mbox{ }), \mbox{ } 10.62 \mbox{ } (\mbox{ } s, \mbox{ } 1H, \mbox{ } NH \mbox{ }); \mbox{ } ESI-MS \mbox{ } 964.4 \mbox{ } (\mbox{ } IM-PF_6]^+ \mbox{ }), \mbox{ } 40.92 \mbox{ } (\mbox{ } IM-2PF_6]^{2+} \mbox{ }). \end{array}$

For **2b**: IR (KBr)/cm⁻¹ 1701 (C=O); ¹H NMR (400 MHz, DMSO-d₆) δ_{H} : 1.85 (br,

Fa Ming TIAN et al.

6H, CH₂×3), 2.73 (t, 2H, CH₂), 3.80 (t, 2H, CH₂), 7.89 (br, 6H, 3-H, 8-H, 3'-H and 8'-H), 8.20 (br, 6H, 2-H, 9- H, 2'-H and 9'-H), 8.52 (d, 4H, 5-H and 6-H), 8.94 (br, 7H, 4-H, 7-H, 4'-H, 7'-H and 6'-H), 10.55 (s, 1H, NH); ESI-MS 978.4 ($[M-PF_6]^+$), 416.8 ($[M-2PF_6]^{2+}$).

For **2c**: IR (KBr)/cm⁻¹ 1696 (C=O); ¹H NMR (400 MHz, DMSO-d₆) δ_{H} : 1.40 (br, 12H, CH₂×6) 1.69 (m, 2H, CH₂), 1.86 (m, 2H, CH₂), 2.69 (t, 2H, CH₂), 3.70 (t, 2H, CH₂), 7.84 (br, 6H, 3-H, 8- H, 3'-H and 8'-H), 8.18 (br, 6H, 2-H, 9-H, 2'-H and 9'-H), 8.57 (d, 4H, 5-H and 6-H), 8.97 (br, 7H, 4-H, 7-H, 4'-H, 7'-H and 6'-H), 10.53 (s, 1H, NH); ESI-MS 1048.6 ([M-PF₆]⁺), 451.8 ([M-2PF₆]²⁺).

Received 19 April 1999

884